Preliminary communication

A diruthenium complex containing an ortho-metallated bipyridyl ligand formed directly from $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ and pyridine

Bruce R. Cockerton and Antony J. Deeming
Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (UK)

(Received December 3, 1991)

Abstract

The cluster $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ reacts with pyridine $\left(6 \mathrm{~mol} / \mathrm{mol} \mathrm{Ru}_{3}\right)$ at $120^{\circ} \mathrm{C}$ to give $\left[\mathrm{Ru}_{2}(\mu-\mathrm{pyr})_{2}(\mathrm{CO})_{6}\right]$ ($\mathbf{p y r}=2$-pyridyl, $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$) as head-to-head and head-to-tail isomers and with neat pyridine at $180^{\circ} \mathrm{C}$ to give $\left[\mathrm{Ru}_{2}(\mu-\mathrm{pyr})\left(\mu-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~N}_{2}\right)(\mathrm{CO})_{5}\right]$, shown by X-ray diffraction to contain a bridging orthometallated bipy ligand formed by coupling of two 2-pyridyl ligands.

Pyridine is orthometallated by reaction with $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right]$ under fairly mild conditions to give the trinuclear clusters: $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})(\mu-\mathrm{pyr})(\mathrm{CO})_{10}\right],\left[\mathrm{Os}_{3}(\mu-\mathrm{H})(\mu-\right.$ pyr) $\left.(\mathrm{CO})_{9}(\mathrm{py})\right]$, and $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})_{2}(\mu-\mathrm{pyr})_{2}(\mathrm{CO})_{8}\right]$ (pyr $=2$-pyridyl) [1] and related 2-pyridyl clusters are formed from $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right][2,3]$. More forcing conditions, such as heating a neat pyridine solution of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right]$ at $180^{\circ} \mathrm{C}$ in a sealed glass tube, gave a quantitative yield of isomers of $\left[\mathrm{Os}_{2}(\mu-\mathrm{pyr})_{2}(\mathrm{CO})_{6}\right]$ in approximately equal amounts, identified by XRD studies of the 4-methylpyridine analogues as head-tohead and head-to-tail isomers [4]. [$\mathrm{Ru}_{3}(\mathrm{CO})_{12}$] is generally much more reactive than $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right]$ and reacts with pyridine $\left(6 \mathrm{~mol} / \mathrm{mol} \mathrm{Ru}{ }_{3}\right)$ in n -heptane at $120^{\circ} \mathrm{C}$ for 72 h to give a complex product mixture from which the only species we have so far isolated is $\left[\mathrm{Ru}_{2}(\mu \text {-pyr })_{2}(\mathrm{CO})_{6}\right], \mathbf{1}(27 \%)$. Careful TLC on silica eluting with light petroleum (b.p. $30-40^{\circ} \mathrm{C}$) allowed total separation of the $1: 1$ mixture of head-to-head 1a and head-to-tail $\mathbf{1 b}$ isomers as colourless crystals. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra [5*] gave four carbonyl resonances with intensity ratio $2: 2: 1: 1$ (w, x, y, z) for $\mathbf{1 a}$ and three absorptions with intensity ratio $2: 2: 2(x, y, z)$ for $\mathbf{1 b}$ (Scheme 1).

Attempting to improve the yields of $\mathbf{1 a}$ and $\mathbf{1 b}$, we carried out a reaction under the same conditions that we had used earlier for osmium (neat pyridine, $180^{\circ} \mathrm{C}$,

[^0]

Scheme 1.
$6 \mathrm{~h})$ and obtained much intractible material as well as red crystals of compound 2 (12%) [6*]. A similar reaction with 4 -methylpyridine gave 3 (16%) analogous to 2. These compounds were characterised as $\left[\mathrm{Ru}_{2}\left(\mu-\mathrm{RC}_{5} \mathrm{H}_{3} \mathrm{~N}\right)\left(\mu-\mathrm{R}_{2} \mathrm{C}_{10} \mathrm{H}_{5} \mathrm{~N}_{2}\right)(\mathrm{CO})_{5}\right]$, $2(\mathrm{R}=\mathrm{H})$ or $3(\mathrm{R}=\mathrm{Me})$ by ${ }^{1} \mathrm{H}$ NMR, IR, $\left[5^{*}\right]$ and XRD in the case of compound 2 [7*]. The ${ }^{1} \mathrm{H}$ NMR spectrum of 2 contains 11 equal intensity multiplets and thus four H -atoms have been lost from three pyridine rings in the formation of 2 . An analysis of the spectrum was consistent with two 2-pyridyl rings and a third ring with just three adjacent H -substituents. The crystal structure of 2 was determined by X-ray diffraction (Fig. 1); the compound contains two organic ligands: pyridine and $2,2^{\prime}$-bipyridyl ligands both orthometallated at sites adjacent to nitrogen atoms. Unlike compound $\mathbf{1}$, it is clear from NMR data that compound 2 exists as a single isomer. The X -ray structure refines best with all three N -atoms attached to $\mathrm{Ru}(2)$, that is just one of the two possible orientations of the 2-pyridyl bridge. 2-Pyridyl ligands do not easily re-orientate [8], for example, enantiomers of [$\mathrm{Os}_{3}(\mu-\mathrm{H})(\mu-$ $\mathrm{pyr})(\mathrm{CO})_{10}$] have been resolved and do not interconvert [9]. Although 2 may be the kinetically-controlled isomer with the 2-pyr ligand locked in that particular orientation, it is more likely that the most stable product is obtained at the elevated temperatures used in the preparation.

The ortho-metallated bipy ligand is the same as that found in the cluster $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})\left(\mu-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~N}_{2}\right)(\mathrm{CO})_{9}\right], 4[10]$, although in that case the cluster was formed directly from bipy and not through the coupling of 2-pyridyl units as in the formation of 2 and 3 . The ruthenium analogue of 4 is also known [11] and its structure is probably like that of $\mathbf{4}$ although this has not been established by diffraction methods.

Use of even more forcing conditions for the reaction between $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ and pyridine to induce further $\mathrm{C}-\mathrm{C}$ bond coupling (neat pyridine, $180^{\circ} \mathrm{C}, 49 \mathrm{~h}$) led to a very reactive mixture. Opening of the evacuated reaction tube, removal of pyridine under reduced pressure, and extraction of the residue into dichloromethane before TLC separation gave the known complexes $\left[\mathrm{RuCl}_{2}(\mathrm{CO})_{2}(\mathrm{py})_{2}\right]$ (8\%) [12] and

Fig. 1. Molecular structure of the complex $\left[\mathrm{Ru}_{2}\left(\mu-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\left(\mu-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~N}_{2}\right)(\mathrm{CO})_{5}\right]$, compound 2. Selected bond lengths (\AA) and angles (${ }^{\circ}$): $\mathrm{Ru}(1)-\mathrm{Ru}(2) 2.715(2), \mathrm{Ru}(1)-\mathrm{C}(21)$ 2.12(1), $\mathrm{Ru}(1)-\mathrm{C}(1), 2.11(1)$, $\mathrm{Ru}(2)-\mathrm{N}(1) 2.04(1), \mathrm{Ru}(2)-\mathrm{N}(2) 2.23(1), \mathrm{Ru}(2)-\mathrm{N}(3) 2.13(1), \mathrm{C}(21)-\mathrm{Ru}(1)-\mathrm{Ru}(2) 70.6(4), \mathrm{C}(1)-\mathrm{Ru}(1)-$ $\mathrm{Ru}(2)$ 70.5(4), $\mathrm{N}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(1)$ 70.3(3), $\mathrm{N}(3)-\mathrm{Ru}(2)-\mathrm{Ru}(1)$ 71.1(3), $\mathrm{N}(2)-\mathrm{Ru}(2)-\mathrm{Ru}(1)$ 143.3(3), $\mathrm{N}(1)-\mathrm{Ru}(2)-\mathrm{N}(2) 74.6(4), \mathrm{C}(1)-\mathrm{Ru}(1)-\mathrm{C}(21) 84.2(5), \mathrm{N}(1)-\mathrm{Ru}(2)-\mathrm{N}(3) 82.5(4), \mathrm{N}(2)-\mathrm{Ru}(2)-\mathrm{N}(3)$ 94.3(4).
$\left[\mathrm{RuCl}_{2}(\mathrm{CO})(\mathrm{py})_{3}\right]$ which has been reported in one isomeric form [13] although we obtained two isomers (58 and 11%) that were separable by TLC. We are examining the nature of the material that reacts so readily with dichloromethane to give these ruthenium(II) complexes.

Acknowledgement. We thank the S.E.R.C. for a grant towards the diffractometer and for a research studentship (for B.R.C.).

References and notes

1 C. Choo Yin and A.J. Deeming, J. Chem. Soc., Dalton Trans, (1975) 2091.
2 A. Eisenstadt, C.M. Giandomenico, M.F. Frederick and R.M. Laine, Organometallics, 4 (1985) 2033.

3 M.I. Bruce, M.G. Humphrey, M.R. Snow, E.R.T. Tiekink and R.C. Wallis, J. Organomet. Chem., 314 (1986) 311.
4 A.J. Arce, A.J. Deeming, C. Choo Yin and M.B. Hursthouse, unpublished results.
5 Selected spectroscopic data (IR in cyclohexane, NMR in $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 292 \mathrm{~K}$, measured J in Hz). Compound 1a: $\nu(\mathrm{CO}) / \mathrm{cm}^{-1}: 2071 \mathrm{~s}, 2033 \mathrm{vs}, 2004 \mathrm{vs}, 1985 \mathrm{~m}, 1967 \mathrm{~s} ;{ }^{1} \mathrm{H}$ NMR: $\delta 7.94$ (ddd, H^{a}, $J=5.5,1.6,0.9), 7.32\left(\mathrm{ddd}, \mathrm{H}^{\mathrm{d}}, J=7.4,1.2,1.2\right), 7.13$ (ddd, $\mathrm{H}^{\mathrm{c}}, J=7.6,7.6,1.7$), 6.71 (ddd, H^{b}, $J=7.3,5.6,1.5$); ${ }^{13} \mathrm{C}$ NMR: $\delta 204.6,201.7,183.3,196.1$ or 185.9 (CO ligands), 196.1 or $185.9,154.5$, 139.1, 132.9, 119.4 (μ-pyr ligands). Compound $1 \mathrm{~b}: \nu(\mathrm{CO}) / \mathrm{cm}^{-1}: 2071 \mathrm{~s}, 2034 \mathrm{vs}, 2003 \mathrm{vs}, 1985 \mathrm{~m}$, 1974s, 1968s; ${ }^{1} \mathrm{H}$ NMR: $\delta 7.87$ (ddd, $\mathrm{H}^{\mathrm{a}}, J=5.5,1.6,0.9 \mathrm{~Hz}$), 7.38 (ddd, $\mathrm{H}^{\mathrm{d}}, J=7.4,1.2,1.2 \mathrm{~Hz}$), 7.17 (ddd, $\mathrm{H}^{\mathrm{c}}, J=7.5,7.5,1.7 \mathrm{~Hz}$), 6.73 (ddd, $\mathrm{H}^{\mathrm{b}}, J=7.3,5.6,1.5 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR: $\delta 204.3,202.0$, 183.7 (CO ligands), 190.2, 154.8, 138.7, 133.0, 120.1 (μ-pyr ligands). Compound 2: $\nu(\mathrm{CO}) / \mathrm{cm}^{-1}$: 2051m, 1996s, 1981vs, $1958 \mathrm{~m}, 1926 \mathrm{~m}$; ${ }^{1} \mathrm{H}$ NMR: $\delta 9.28$ (ddd, $\mathrm{H}^{4}, J=5.4,1.6,0.9$), 7.98 (dd, H^{d}, $J=8.1,1.9), 7.94\left(\mathrm{ddd}, \mathrm{H}^{\mathrm{c}}, J=8.0,8.0,1.6\right), 7.61\left(\mathrm{ddd}, \mathrm{H}^{\mathrm{k}}, J=5.4,1.7,1.0\right), 7.56\left(\mathrm{dd}, \mathrm{H}^{\mathrm{c}}, J=6.6\right.$, 2.0), 7.52 (ddd, $\mathrm{H}^{\mathrm{b}}, J=6.1,5.2,1.8$), 7.34 (dd, $\mathrm{H}^{\mathrm{g}}, J=7.6,1.9$), 7.31 (dd, $\mathrm{H}^{\mathrm{f}}, J=7.5,7.5$), 7.24 (dd,
$\mathrm{H}^{\mathrm{h}}, J=7.5,1.2$), 6.96 (ddd, $\mathrm{H}^{\mathrm{i}}, J=7.5,7.5,1.7$), 6.49 (ddd, $\mathrm{H}^{\mathrm{j}}, J=7.3,5.6,1.4$).
6 Synthesis of compounds 2. Triruthenium dodecacarbonyl (0.225 g) and pyridine ($20 \mathrm{~cm}^{3}$) were sealed in an evacuated glass tube which was heated at $180^{\circ} \mathrm{C}$ for 6 h . The red solution was reduced to dryness under reduced pressure and the residue was separated by TLC on silica [eluant: light petroleum (b.p. $30-40^{\circ} \mathrm{C}$)/dichloromethane ($1: 1 \mathrm{v} / \mathrm{v}$)] to give one main red band which gave red crystals of $\left[\mathrm{Ru}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\left(\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~N}_{2}\right)(\mathrm{CO})_{5}\right]$ from a dichloromethane solution layered with methanol (Found: C, 41.6; H, 1.9; N, 6.8. $\mathrm{C}_{20} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Ru}_{2}$ calc.: C, 41.7; H, 1.9; N, 7.3\%).
7 Structure of 2. Red crystal, $\mathrm{C}_{20} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Ru}_{2}, M=575.48 \mathrm{~g} \mathrm{~mol}^{-1}$, size $=0.28 \times 0.16 \times 0.06 \mathrm{~mm}^{3}$, monoclinic, $C 2 / c, a=24.456(9), \quad b=11.791(5), c=14.113(4) \AA, \beta=100.65(3)^{\circ}, V=3999(2) \AA^{3}$, $Z=8, D_{\text {calcd }}=1.91 \mathrm{~g} \mathrm{~cm}^{-3}, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=15.17 \mathrm{~cm}^{-1}, F(000)=2240$. Nicolet $\mathrm{R} 3 \mathrm{v} / \mathrm{m}$ diffractometer, Mo-radiation ($\lambda=0.71073 \AA$), room temperature data corrected empirically for absorption. Direct methods, $R=0.0638, R^{\prime}=0.0595$, where $R^{\prime}=\left[\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma w\left|F_{\mathrm{o}}\right|^{2}\right]^{1 / 2}$ and $w=1 /\left[\sigma^{2}(F)\right.$ $\left.+0.000316 F^{2}\right], 131$ parameters and 1843 data with $I_{\mathrm{o}}>3 \sigma\left(I_{\mathrm{o}}\right)$ in the range $5 \leq 2 \theta \leq 50^{\circ}$. Ruthenium atoms anisotropic with H -atoms included in idealised positions ($\mathrm{C}-\mathrm{H} 0.96 \AA, U=0.08 \AA^{2}$). Equivalent isotropic thermal parameters for $N(3)$ and $C(21)$ are 0.038 and $0.046 \AA^{2}$ but if $N(3)$ is refined as a carbon atom and $\mathrm{C}(21)$ as a nitrogen atom their respective thermal parameters become 0.023 and 0.094 . The orientation of the $2-$ pyr ligand in Fig. 1 is therefore probably correct. Atomic coordinates, bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre.
8 (a) A.J. Deeming, M. Karim, N.I. Powell and K.I. Hardcastle, Polyhedron, 9 (1990) 623; (b) R.R. Cockerton, A.J. Deeming, M. Karim and K.I. Hardcastle, J. Chem. Soc., Dalton Trans., (1991) 431; (c) G. Conole, M. McPartlin, H.R. Powell, T. Dutton, B.F.G. Johnson, J. Lewis, J. Organomet. Chem., 379 (1989) C1.
9 V.A. Maksakov, V.A. Eshova, V.P. Kirin, I.K. Golovaneva, A.Yu. Mikhailova and A.P. Klyagina, Dokl. Akad. Nauk. SSSR, 299 (1988) 116.
10 A.J. Deeming, R. Peters, M.B. Hursthouse and J.D.J. Backer-Dirks, J. Chem. Soc., Dalton Trans., (1982) 787.

11 G.A. Foulds, B.F.G. Johnson and J. Lewis, J. Organomet. Chem., 294 (1985) 123.
12 T.A. Stephenson and G. Wilkinson, J. Inorg. Nucl. Chem., 28 (1966) 945.
13 S.D. Robinson and G. Wilkinson, J. Chem. Soc. A, (1966) 300.

[^0]: Correspondence to: Professor A.J. Deeming, Chemistry Department, University College London, 20 Gordon Street, London WC1H 0AJ, UK.

 * Reference number with asterisk indicates a note in the list of references.

